Journal of Organometallic Chemistry, 172 (1979) C59-C62
© Elsevier Sequoia S A , Lausanne - Printed in The Netherlands

Preliminary communication

THE STRUCTURE AND VARIABLE TEMPERATURE ${ }^{13} \mathbf{C}$ NMR SPECTRA OF μ, μ^{\prime}-(1,3-DITHIOLATOCYCLOHEPTA-4,6-DIENE) HEXACARBONYLDIIRON(I)

ALAN SHAVER*, PAUL J FITZPATRICK, KOSTA STELIOU and IAN S BUTLER Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, Quebec H3A 2 K6 (Canada)

(Received January 29th, 1979)

Summary

$\mu, \mu^{\prime}-(1,3$-Dithiolatocyclohepta-4,6-dıene)hexacarbonyldiron(I) was prepared by the reaction of 2,3,4-trithiabicyclo[4,3,1]deca-6.8-diene with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ The carbonyls undergo rapid site exchange within each $\mathrm{Fe}(\mathrm{CO})_{3}$ group but there is no exchange of carbonyls between the two different $\mathrm{Fe}(\mathrm{CO})_{3}$ moretres The novel bicychic nature of the bridging ligand results in a short iron-mron bond distance and a long sulfur-sulfur distance as compared to other members of this class.

Complexes of the type $\left[(\mathrm{RS})(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$ have been of interest since their preparation more than 40 years ago [1]. Unbridged examples exist as a mixture of isomers which differ in the relative geometry of the R groups, ie, axialaxial, equatorial-equatorial, and axial-equatorial [2]. The $\mathrm{Fe}(\mathrm{CO})_{3}$ groups of such complexes are stereochemically non-rigid with rapid interconversion of axial and basal carbonyl positions [3], however, it remains uncertan whether carbonyl exchange between the two $\mathrm{Fe}(\mathrm{CO})_{3}$ units occurs All complexes reported to date, both bridged and unbridged, have been symmetrical so that the $\mathrm{Fe}(\mathrm{CO})_{3}$ residues are spectroscopically identical Substitution of one carbonyl group removes the symmetry of the system and in the cases studied there is no exchange of carbonyl ligands between the $\mathrm{Fe}(\mathrm{CO})_{3}$ and $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~L}$ groups [4,5$]$ However, the effects on stereochemical lability of such a change are notonously difficult to predict [5] Extrapolation of results from these $\mathrm{Fe}_{2}(\mathrm{CO})_{5} \mathrm{~L}$ type complexes to the parent hexacarbonyl compounds is somewhat hazardous.

We have reported a decarbasulfurization type of reaction between sulfurcontaining cyclic olefins and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ whereby the novel bridged complex 1 may be prepared from 2 and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ [6] The isolation of the title complex 3 from the reaction of 4 wth $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ was briefly mentioned Complex 3 is of
particular interest since it is, to our knowledge, the first unsymmetrical example in this class.

Treatment of 4 [7] with excess $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in THF for 2 hours results in a complex mixture of compounds Column chromatography of the reaction mixture on alumina produces 3 upon elution with n-hexane The complex can be ssolated as dark red crystals (m p. $122^{\circ} \mathrm{C}$) from n-hexane (yield 17-25\%), satisfactory elemental analyses were obtained for C, H and S ; infrared (n -hexane) $\nu(\mathrm{CO})^{-2075 m, 2036 s, ~} 2005 \mathrm{~s}, 1995 \mathrm{~s}, 1982 \mathrm{w} \mathrm{cm}{ }^{-1},{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$) 130 $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{m}\right), 3.53\left(\mathrm{H}_{\mathrm{b}},(\mathrm{br}) \mathrm{s}\right), 6.28 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{c}}\right.$ and $\left.\mathrm{H}_{\mathrm{d}},(\mathrm{br}) \mathrm{s}\right)$; the parent ion ($m / e 436$) was observed in the mass spectrum followed by sequential loss of 6 carbonyl ligands The identity of other products is still under investigation.

1

3

4

The ${ }^{13} \mathrm{C}$ NMR spectrum of 3 in the carbonyl region shows two single peaks at room temperature ($2087,2074 \mathrm{ppm}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) consistent with rapid site exchange within each $\mathrm{Fe}(\mathrm{CO})_{3}$ resıdue but with no exchange of carbonyl ligands between the two different $\mathrm{Fe}(\mathrm{CO})_{3}$ groups. The complex decomposes in DMSO- d_{6} at about $120^{\circ} \mathrm{C}$, however, the two singlets are invanant up to $95^{\circ} \mathrm{C}$ in toluene- d_{8}. This proves that inter-iron carbonyl exchange does not occur rapidly for the $\left[(\mathrm{RS})(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$ class of complex Upon coolng, the carbonyl bands begin to broaden at $-8^{\circ} \mathrm{C}$, coalesce at about $-35^{\circ} \mathrm{C}$ and appear as four sharp peaks, in the approximate ratio 2/2/1/1 (209 7, 207 4, 205 7, 2047 ppm), at $-80^{\circ} \mathrm{C}$ The low temperature study is consistent with the gradual slowing of the site exchange process within each $\mathrm{Fe}(\mathrm{CO})_{3}$ group as the temperature is lowered until a limiting spectrum of two peaks (2/1) is observed for both unique $\mathrm{Fe}(\mathrm{CO})_{3}$ residues. The four peaks due to the carbons of the $\mathrm{C}_{7} \mathrm{H}_{8}$ nng do not change between -80 to $95^{\circ} \mathrm{C}$

Crystals of 3 are monoclmic space group $P 2_{1} / n, a 12981(1), b 13294(1)$, c 9.583(1) $\AA, \beta 9846(1)^{\circ}, Z=4$ Data collection by the stationary crystalstationary counter method (graphite monochromatized $\mathrm{Ag}-K_{\beta}$ radiation) yielded 1053 symmetry independent reflections havng $I>2 \sigma(I)$. Drect methods were used to solve the structure. Least-squares refinement employing anisotropic thermal parameters for all non-hydrogen atoms has resulted in a conventional unweighted residual of 5.2%

The structure exhibits the typical butterfly $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ core with the $\mathrm{C}_{7} \mathrm{H}_{8}$ group double-bridging the two sulfur atoms. One $\mathrm{Fe}(\mathrm{CO})_{3}$ group lies under the diene

Fig 1 An ORTEP drawing of μ, μ^{\prime}-(1 3-dithiolatocyclohepta-4 6-diene)hevacarbonylduron(I) which illustrates the different environments of the two $\mathrm{Fe}(\mathrm{CO})_{3}$ groups
part of the ring while the other lies under the methylene group (Fig 1), the molecule possessing effective C_{s} symmetry The crystal structures of the bridged complexes 1 [6] and [$\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CS}\right)(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}(5)$ [8], the unbridged [(RS) $(\mathrm{CO})_{3} \mathrm{Fe}$] where $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$ [2] and $\mathrm{C}_{6} \mathrm{H}_{5}$ [9], as well as [(S)(CO) $\left.{ }_{3} \mathrm{Fe}\right]_{2}$ which contans an S_{2} ligand [10], have been reported The shortest $S-S$ distance occurs in the latter compound, as expected, whereas in 3 the non-bonded $S-S$ distance and S-Fe-S angles of $3027(6) \AA$ and $845(1)^{\circ}$, respectively, are the largest observed for this class of complex and approach the values expected for a planar $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ core. The $\mathbf{C}(1)-\mathbf{C}(6)$ separation at the mercapto-bridgehead is $261(2) \AA$ which results in a $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$ angle which is significantly distorted (1185(17) ${ }^{\circ}$) from the expected tetrahedral geometry The methylene fragment is slightly bent away from its nearest $\mathrm{Fe}(\mathrm{CO})_{3}$ residue ($\mathrm{S}-\mathrm{C}-\mathrm{C}(7) 1149(10)^{\circ}$) while the diene portion of the ring lies closer to the remaining $\mathrm{Fe}(\mathrm{CO})_{3}$ group ($\mathrm{S}-\mathrm{C}-\mathrm{C}$ (diene) $105.6(1.0)^{\circ}$) Thus the cycloheptadiene ligand exhibits a large degree of flexiblity in its bonding mode

The $\mathrm{Fe}-\mathrm{Fe}$ distance in 3 is very close to that in $\mathbf{1}$ which is the shortest observed to date (Table 1). Unlike 1 where short $\mathrm{S}-\mathrm{S}$ and $\mathrm{Fe}-\mathrm{Fe}$ distances are found, the double bridging in 3 leads to a long $S-S$ distance and a short $\mathrm{Fe}-\mathrm{Fe}$ one In complex 5 the $S-S$ approach is intermediate between that observed in 1 and 3 , whereas the $\mathrm{Fe}-\mathrm{Fe}$ bond length is the longest of the three bridged species

TABLE 1
A COMPARISON OF SELECTED BOND LENGTHS (\AA) AND ANGLES (deg) IN SOME BRIDGED AND UNBRIDGED [(RS)(CO) $\left.{ }_{3} \mathrm{Fe}\right]_{2}$ COMPLEXES

	S-Fe-S	$s-s$	$\mathrm{Fe}-\mathrm{Fe}$
$\left.[\mathrm{S})(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$	535 (1)	2007 (5)	$2552(2)$
$\mathrm{CH}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6} \mathrm{Fe}_{2}$ (1)	72 45(4)	2673 (2)	2485 (1)
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CS}\right)(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$ (5)	78 70(15)	2 876(7)	$2507(5)$
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{S}(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$	79 80(7)	2910 (5)	2516 (2)
$\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{S}(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$	810 (3)	$2932(14)$	2537 (10)
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~S}_{2}(\mathrm{CO})_{6} \mathrm{Fe}_{2}$ (3)	845 (1)	3027 (6)	2497 (4)

5
Thus the ron-mron and sulfur-sulfur distances seem unrelated Molecular orbital calculations on $\left[\mathrm{X}(\mathrm{CO})_{3} \mathrm{Fe}\right]_{2}$ dimers [11] postulate the existence of a bent $\mathrm{M}-\mathrm{M}$ bond The vibrational spectra of these complexes are being studied to see whether a correlation exists between the $\mathrm{Fe}-\mathrm{Fe}$ stretching frequency and the molecular structure [12], as well as to probe any differences in the bonding mvolving the axial and basal carbonyl hgands [13]

Acknowledgements

This work was supported by grants from the National Research Councll of Canada, the Quebec Department of Education and Imperial Orl of Canada (A S) P JF acknowledges a McGill Unıversity Graduate Research Fellowshıp. The authors are grateful to Professor G. Donnay for the use of X-ray facilities, to Dr. G. Hamer for the ${ }^{13} \mathrm{C}$ NMR spectra and to Professor J Takats for the mass spectrum.

References

[^0]
[^0]: 1 For a review, see E W Abel and si C Crosse, Organometal. Chem Rev 2 (1967) 443
 2 L F. Dahl and C H Wer, Inorg Chem, 2 (1963) 328
 3 RD Adams FA Cotton WR Cullen DH Hunter and L Mihichuk, Inorg Chem, 14 (1975) 1395
 4 JP Crow and W R Cullen Can. J Chem, 49 (1971) 2948
 5 T.C. Flood, F J DiSantı and KFD Campbell Inorg Chem, 17 (1978) 1643
 6 A Shaver P J. Fitzpatnck, K. Stehou and I S. Butler J Amer Chem Soc, 101 (1979) 1313
 7 H Fnitz and C D Wers, Tetrahedron Lett, (1974) 1659
 8 H P. Weber and R.F Bryan, J. Chem. Soc A (1967) 182
 9 W Henslee and R E Davis Cryst Struct Comm, 1 (1972) 403
 10 CH Wer and L F Dahl, Inorg Chem, 4 (1965) 1
 11 BK Teo, M B Hall, R F Fenske and L F Dahl Inorg, Chem 14 (1975) 3103
 12 W M Scovell and TG Spiro. Inorg Chem 13 (1974) 304 S F A Kettle and PL Stanghellim, Inorg Chem, 16 (1977) 753
 13 G Bor J Organometal Chem, 94 (1975) 181

