Preliminary communication

THE STRUCTURE AND VARIABLE TEMPERATURE ¹³C NMR SPECTRA OF μ, μ' -(1,3-DITHIOLATOCYCLOHEPTA-4,6-DIENE)HEXACARBONYL-DIIRON(I)

ALAN SHAVER^{*}, PAUL J FITZPATRICK, KOSTA STELIOU and IAN S BUTLER Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, Quebec H3A 2K6 (Canada) (Received January 29th, 1979)

Summary

 μ,μ' -(1,3-Dithiolatocyclohepta-4,6-diene) hexacarbonyldiiron (I) was prepared by the reaction of 2,3,4-trithiabicyclo[4,3,1]deca-6.8-diene with Fe₂(CO)₉ The carbonyls undergo rapid site exchange within each Fe(CO)₃ group but there is no exchange of carbonyls between the two different Fe(CO)₃ moleties The novel bicyclic nature of the bridging ligand results in a short iron—iron bond distance and a long sulfur—sulfur distance as compared to other members of this class.

Complexes of the type $[(RS)(CO)_3Fe]_2$ have been of interest since their preparation more than 40 years ago [1]. Unbridged examples exist as a mixture of isomers which differ in the relative geometry of the R groups, i.e., axial axial, equatorial—equatorial, and axial—equatorial [2]. The Fe(CO)₃ groups of such complexes are stereochemically non-rigid with rapid interconversion of axial and basal carbonyl positions [3], however, it remains uncertain whether carbonyl exchange between the two Fe(CO)₃ units occurs All complexes reported to date, both bridged and unbridged, have been symmetrical so that the Fe(CO)₃ residues are spectroscopically identical Substitution of one carbonyl group removes the symmetry of the system and in the cases studied there is no exchange of carbonyl ligands between the Fe(CO)₃ and Fe(CO)₂L groups [4,5] However, the effects on stereochemical lability of such a change are notoriously difficult to predict [5] Extrapolation of results from these Fe₂(CO)₅L type complexes to the parent hexacarbonyl compounds is somewhat hazardous.

We have reported a decarbasulfunzation type of reaction between sulfurcontaining cyclic olefins and $Fe_2(CO)_9$ whereby the novel bridged complex 1 may be prepared from 2 and $Fe_2(CO)_9$ [6] The isolation of the title complex 3 from the reaction of 4 with $Fe_2(CO)_9$ was briefly mentioned Complex 3 is of particular interest since it is, to our knowledge, the first unsymmetrical example in this class.

Treatment of 4 [7] with excess Fe₂(CO), in THF for 2 hours results in a complex mixture of compounds Column chromatography of the reaction mixture on alumina produces 3 upon elution with n-hexane The complex can be isolated as dark red crystals (m p. 122°C) from n-hexane (yield 17–25%), satisfactory elemental analyses were obtained for C, H and S; infrared (n-hexane) ν (CO)⁻ 2075m, 2036s, 2005s, 1995s, 1982w cm⁻¹, ¹H NMR (CD₂Cl₂) 1 30 (H_a,m), 3.53(H_b,(br)s), 6.28 ppm (H_c and H_d,(br)s); the parent ion (*m/e* 436) was observed in the mass spectrum followed by sequential loss of 6 carbonyl ligands The identity of other products is still under investigation.

The ¹³C NMR spectrum of 3 in the carbonyl region shows two single peaks at room temperature (208 7, 207 4 ppm in CD_2Cl_2) consistent with rapid site exchange within each Fe(CO)₃ residue but with no exchange of carbonyl ligands between the two different Fe(CO)₃ groups. The complex decomposes in DMSO-d₆ at about 120°C, however, the two singlets are invariant up to 95°C in toluene-d₈. This proves that inter-iron carbonyl exchange does not occur rapidly for the [(RS)(CO)₃Fe]₂ class of complex Upon cooling, the carbonyl bands begin to broaden at -8°C, coalesce at about -35°C and appear as four sharp peaks, in the approximate ratio 2/2/1/1 (209 7, 207 4, 205 7, 204 7 ppm), at -80°C The low temperature study is consistent with the gradual slowing of the site exchange process within each Fe(CO)₃ group as the temperature is lowered until a limiting spectrum of two peaks (2/1) is observed for both unique Fe(CO)₃ residues. The four peaks due to the carbons of the C₇H₈ ring do not change between -80 to 95°C

Crystals of 3 are monoclinic space group $P2_1/n$, a 12 981(1), b 13 294(1), c 9.583(1) Å, β 98 46(1)°, Z = 4 Data collection by the stationary crystal stationary counter method (graphite monochromatized Ag- K_β radiation) yielded 1053 symmetry independent reflections having $I > 2\sigma(I)$. Direct methods were used to solve the structure. Least-squares refinement employing anisotropic thermal parameters for all non-hydrogen atoms has resulted in a conventional unweighted residual of 5.2%

The structure exhibits the typical butterfly Fe_2S_2 core with the C_7H_8 group double-bridging the two sulfur atoms. One $Fe(CO)_3$ group lies under the diene

C60

Fig 1 An ORTEP drawing of μ, μ' -(1 3-dithiolatocyclohepta-4 6-diene)hexacarbonylduron(I) which illustrates the different environments of the two Fe(CO)₃ groups

part of the ring while the other lies under the methylene group (Fig 1), the molecule possessing effective C_s symmetry The crystal structures of the bridged complexes 1 [6] and $[(C_6H_5CS)(CO)_3Fe]_2$ (5) [8], the unbridged $[(RS)(CO)_3Fe]$ where $R = C_2H_5$ [2] and C_6H_5 [9], as well as $[(S)(CO)_3Fe]_2$ which contains an S_2 ligand [10], have been reported The shortest S—S distance occurs in the latter compound, as expected, whereas in 3 the non-bonded S—S distance and S—Fe—S angles of 3 027(6) Å and 84 5(1)°, respectively, are the largest observed for this class of complex and approach the values expected for a planar Fe_2S_2 core. The C(1)—C(6) separation at the mercapto-bridgehead is 2 61(2) Å which results in a C(6)—C(7)—C(1) angle which is significantly distorted (118 5(1 7)°) from the expected tetrahedral geometry The methylene fragment is slightly bent away from its nearest $Fe(CO)_3$ residue (S—C—C(7) 114 9(1 0)°) while the diene portion of the ring lies closer to the remaining $Fe(CO)_3$ group (S—C—C (diene) 105.6(1.0)°) Thus the cycloheptadiene ligand exhibits a large degree of flexibility in its bonding mode

The Fe—Fe distance in 3 is very close to that in 1 which is the shortest observed to date (Table 1). Unlike 1 where short S—S and Fe—Fe distances are found, the double bridging in 3 leads to a long S—S distance and a short Fe—Fe one In complex 5 the S—S approach is intermediate between that observed in 1 and 3, whereas the Fe—Fe bond length is the longest of the three bridged species

	S-Fe-S	s—s	Fe-Fe	
[(S)(CO) ₃ Fe] ₂	53 5(1)	2 007(5)	2 552(2)	
CH2S2(CO) Fe2 (1)	72 45(4)	2 673(2)	2 485(1)	
$[(C_6H_5CS)(CO)_1Fe]_7$ (5)	78 70(15)	2 876(7)	2 507(5)	
$[(C_6H_5)S(CO)_3Fe],$	79 80(7)	2 910(5)	2 516(2)	
[(C ₂ H ₅)S(CO) ₃ Fe],	81 0(3)	2 932(14)	2 537(10)	
C,H,S,(CO), Fe, (3)	84 5(1)	3 027(6)	2 497 (4)	

A COMPARISON OF SELECTED BOND LENGTHS (Å) AND ANGLES (deg) IN SOME BRIDGED AND INPRIDGED ((RS)(CO) EAL COMPLEXES

Thus the iron—iron and sulfur—sulfur distances seem unrelated Molecular orbital calculations on $[X(CO)_3Fe]_2$ dimers [11] postulate the existence of a bent M-M bond The vibrational spectra of these complexes are being studied to see whether a correlation exists between the Fe-Fe stretching frequency and the molecular structure [12], as well as to probe any differences in the bonding involving the axial and basal carbonyl ligands [13]

Acknowledgements

This work was supported by grants from the National Research Council of Canada, the Quebec Department of Education and Imperial Oil of Canada (AS) P J F acknowledges a McGill University Graduate Research Fellowship. The authors are grateful to Professor G. Donnay for the use of X-ray facilities, to Dr. G. Hamer for the ¹³C NMR spectra and to Professor J Takats for the mass spectrum.

References

- 1 For a review, see EW Abel and BC Crosse, Organometal. Chem Rev 2 (1967) 443
- 2 L F. Dahl and C H Wei, Inorg Chem, 2 (1963) 328
- 3 R D Adams F A Cotton W R Cullen D H Hunter and L Millichuk, Inorg Chem, 14 (1975) 1395
- 4 J P Crow and W R Cullen Can. J Chem, 49 (1971) 2948
- 5 T.C. Flood, F J DiSanti and K D Campbell Inorg Chem., 17 (1978) 1643
- 6 A Shaver P J. Fitzpatnck, K. Stehou and I S. Butler J Amer Chem Soc, 101 (1979) 1313
- 7 H Fritz and C D Weis, Tetrahedron Lett, (1974) 1659
- 8 H P. Weber and R.F Bryan, J. Chem. Soc A (1967) 182
 9 W Henslee and R E Davis Cryst Struct Comm. 1 (1972) 403
- 10 CH Wei and LF Dahl, Inorg Chem, 4 (1965) 1
- 11 BK Teo, MB Hall, RF Fenske and LF Dahl Inorg. Chem 14 (1975) 3103
- 12 WM Scovell and TG Spiro, Inorg Chem 13 (1974) 304 SFA Kettle and PL Stanghellini, Inorg Chem, 16 (1977) 753
- 13 G Bor J Organometal Chem, 94 (1975) 181

TABLE 1